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Abstract—The problem of a semi-infinite plate moving with a velocity u_(¢) into a stagnant fluid is con-
sidered, and a solution correct to second order for heat transfer with constant surface enthalpy is obtained
for small £ = xfﬁ)u,(t) dt (where t is time, u{t) = —u, {8} and x is the distance from the leading edge). The
solution, which includes the effect of viscous dissipation, is valid under the conditions that u.(t) > 0 and
u (1) is infinitely differentiable for all ¢, and is the continuation of the work of Cheng and Elliott, who obtained
the solution to the incompressible momentum equation for the velocity profile and skin friction. Second
order results were obtained by numerical integration for a Prandt]l number of 072, and satisfactory agree-
ment is shown with the results of other investigators who used different approaches in obtaining just the
first order solution, or an incomplete second order solution.

NOMENCLATURE Greek symbols
a, speed of sound; v, kinematic viscosity;
c, constant in viscosity-enthalpy law; ¥, stream function;
f,F, functions in expansion of ¥; Ps density;
h, enthalpy; ¢ x/ft u, dt;
H, (h —h, )k, —h); oo &t
M, Mach number; o y(u/cv  x)E;
D pressure; w, circular frequency.
Pr, Prandtl number;
q, heat transfer rate; Subscripts
r, R, A, functions in expansion of H; w, plate surface;
S, wx/u; o, undisturbed fluid;
t, time; K, summation index;
uft),  external fluid velocity; s, steady.
u, velocity in x direction;
o, velocity in y direction; Superscripts
w, W, ¥, functions in expansion of H; * refers to coordinate axes fixed in
x, distance from leading edge of plate; space.
b distance normal to plate surface;
(Zg, ue, .ﬁ) ue dt/“§§
& Cf)ﬂStt%ﬂt; * Present address: Towne School of Civil and Mechanical
i viscosity, Engineering, University of Pennsylvania, Philadelphia, Pa.
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1. INTRODUCTION AND METHOD OF
APPROACH

VARIOUS investigators have analyzed unsteady
flat plate motions, the earliest being Stokes 1],
followed by Rayleigh [1], with their associated
classical problems which yielded exact solutions
to the incompressible Navier-Stokes equations.
Impulsively started compressible flat plate
motions have been studied by Stewartson
[2, 3], Howarth [4], Van Dyke [5] and others,
and Ostrach [6] has investigated the com-
pressible analogue to Stokes’ problem.

Unsteady solutions for skin friction for various
types of semi-finite plate motion, u (t), have
been obtained by Lighthill [7], Moore [8],
Cheng [9] and Cheng and Elliott [10]. Sarma,
in a series of papers [11-14], developed a unified
theory for unsteady boundary layers under
varying conditions of velocity and temperature
based on a linearized analysis similar to that of
Lighthill [7]. The present paper is an extension
of Cheng and Elliott’s work to include compress-
ible heat transfer effects. The expansion solution
obtained for constant plate surface enthalpy is
valid for small & = x/t}, u (t) dt (where t is time,
ufty = —u,(t) and x is the distance from the
leading edge), under the conditions that u () > 0
and u (1) is infinitely differentiable for all #. These
conditions stipulate that the plate moves with
no reverse flow (ie. the leading edge never
becomes a trailing edge), and that motions of an
impulsive nature are excluded. Cheng and
Elliott’s further condition that the plate start
from rest (u,(0) = 0) will be relaxed, so that the
heat transfer will consist of the quasi-steady
value followed by terms representing deviations
from this value.

After reduction of the appropriate compress-
ible boundary layer equations to an incom-
pressible, uncoupled form by means of the
Howarth—-Dorodnitsyn variable under the as-
sumption of a linear viscosity—enthalpy law,
two series expansions in &, = & are developed
for the energy equation. The first series gives the
heat transfer rate occurring under a constant
driving potential in the absence of viscous
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dissipation, the correction due to this effect
being made by addition of the results from the
second series. The validity of this procedure
follows from the linear nature of the energy
equation.

The results obtained are then compared with
those of Lighthill [7], Ostrach [15] and
Illingworth [16], the nature of whose work will
be described when the comparison is made in a
later section.

Part II will present experimental results for
verification of the theory.

2. FORMULATION OF THE PROBLEM
For a flat plate with zero pressure gradient
and constant surface enthalpy, moving un-
steadily into a compressible stagnant fluid,
where the coordinate axes (x*, y*) are fixed in
space, the boundary layer equations are:
Continuity:

a{*~t—6x*(,ou)—&—a—y(,ov)_“O

Momentum:

2.1

L Ou* ou*
p I +p*u*a "

du*
+ p* *
ot*

5v*
5,

B ~—( 4 Ou*
oy \7 gy

(2.2)

1 @ 5h*) ou*\?
= e e 2.3
Pr@y*(‘u ay* o <5y> 23)
where (u*, v*) are the velocity components in the
(x*, y*) directions respectively, and p*, p*, p*
and h* are respectively the density, viscosity,
pressure and enthalpy, and Pr is the Prandtl

number.
To solve the above system, the following
equations are added:
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State: p* = p*RT*

Viscosity—enthalpy law:
u* = p*(h*). 2.5)

For all ¢* the plate is considered to be lying
along the x*-axis (y* = 0) with its leading edge
at x* = 0 when t* = 0, and, at this instant, the
plate is moving with a velocity u*(t*) in the
negative x*-direction. This velocity is arbitrary
to the extent allowed by the following conditions:

(1) u*(@*) < Oforall ¢*

(2) u*(t*) is infinitely differentiable for all ¢*.
Condition (1) ensures that the plate moves with
no ensuing reverse motion, and condition (2)
excludes motions of an impulsive nature.

Following the development of Cheng and
Elliott [10], use of the Howarth-Dorodnitsyn
variable, introduction of a stream function
defined by

2.4

form

{c is a constant), and transfer of the coordinate
system (x*, y*, t*) fixed in space to (x, y, ) fixed
in the plate with the origin at the leading edge

and u}(t*) = —u (1), transforms the equation
system {2.1}2.5) to
Voo WY, — VY, = e St oV, (26
h+yh —yh = 2
3 - llfy . lf!x . == "ﬁ;kyy + cvw![lw. (2.7)
The appropriate boundary conditions are
![Ix'::llly:() for x=20,y=0 2.8)
h=h, =constantforx >0,y =0 (2.9
Y, =ufl)

—h } for x>0,y . (2.10)
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Equations (2.6) and (2.7) are uncoupled and in
incompressible form, and solutions obtained
for (2.7) are valid both when the plate is moving
into undisturbed fluid and when the fluid is
moving over the plate at rest. However, any
solution obtained, and applied (via the inverse
transformation) to the full compressible prob-
lem, is valid only for the plate moving unsteadily
into fluid at rest; this can be seen from the
boundary condition (2.10), since h, can be
constant only in a stagnant (compressible} field.

3. NON-DIMENSIONAL PARAMETERS FOR THE
SOLUTION FOR SMALL ¢

From the work of Cheng [9] and Cheng and
Elliott [10], it turns out that the correct para-
meters for a solution around ¢ = 0 are:

x +
S0 = (foum )

u k3
and Co = 71/%(:0 = 3’<cv ex> (3*1)

where
ut(t) {f, u (t) dt
o = mi%f-w (32)
with the stream function expanded as
¥ = (cev ux)? xZo F (o, EE (3.3)

As defined in equation (3.1), {, is a direct ex-
tension of the Blasius parameter into unsteady
flow. The parameter 2, equation (3.2), is required
in the ensuing analysis.

Following a procedure similar to that used by
Ostrach [11], a non-dimensional parameter for
the energy equation, with constant surface

enthalpy, &, is defined by:
h(x,y,t) — h
H > Yo f) =~
Substitution of (3.3) and (3.4) into (2.13) yields:
H+yH ~y H = P —=2H, +h —h ny

(3.5)
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Equation (3.5) is the final form of the energy
equation, which is linear in H. For constant
surface enthalpy a solution will first be obtained
to the homogeneous equation involving the
storage, convection and conduction terms, and
to this will be added the particular integral from
the full inhomogeneous equation which will
include the viscous dissipation term. Hence H is
split as follows:

Hix, y,t) = w(x, y,1) + rx, y, t} (3.6)

2(h, — h_)
where w is the homogeneous solution and r is
the particular integral. Finally, w and r are
expanded as:

W = K;() WK(C{)’ t) ég (3‘7)
= 3 Ryl 0K (3.8)

4. DEVELOPMENT OF THE EQUATIONS FOR
SMALL ¢

From the parameters defined in (3.1), the
transformation relations from (x, v, t} to

(o Co D) are:

0 160 14 o o (1w 0
ox 2xd, 2x a, @y \evx) oLy
o 0 ul, 1 d lue 0

2ol 20 4.1
ot ot 2 [Lu,drdg, 2u u, 03T o, @.1)

Introduction of ¥ from (3.3), w from (3.7) and
r from (3.8) into the momentum equation (2.12)
and the energy equation {3.5) (neglecting the
viscous dissipation term when substituting for
w), results in the following systems of partial
differential equations:

i{a( 6F> 1w OF,
k=0
8*F,

¢dl,) 20 udr oL,
2
e K U,
3 b5 }50 tafuar

{ 5 ac:ax)(zx P ex)
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& O*Fy ko, i
—<K§0 ach 0 )(KE::O(K + 1)Fxég 1)}

u? o F, k-3 ‘
— o)
- +50 edtxzo g @2
flude & (oW, 1 u
Z
w, Sl a0 2fy.de

lu; oW,
+ gg Fre
e O
(z
1 2 52WK K

o Wy ok
X <KZO 550 f )} PFK = ac2

foude 3 {@R 1 u,
K=0

u

] T, 2fudt

_ueg; ORyx + 24, R} K+2
2ue 6(:0 u
1 & OF ¢ X
3£ ) (L nat
* OR
[ Rwnrar|( )

I 2 Ry . (@ 3*F )2
- +2 Kel)l. (@9
Pr a2 &AL, a2 o (

21 ‘2*;: J

Kchfg) - [ i (K+1) Fxéf)‘}

4.3)

(4

K=0

By the coordinate transformation of (4.1),
L Z OF X

ue K=0 6C0

Lfev_u\?
v=| 22
2 X

Z{ 550 (K—i-})F]cfg.

and

Hence, to satisfy boundary condition (2.8), it
will be necessary that

oF
F (0,1 =0 = X(0,1).

o,
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From (3.4), (3.6), (3.7) and (3.8) with h(x, 0, 1) =
h,, = constant, then

u2

Hx0,0 = 1= F Wd0.0 + 75—

x ¥ R0, &
K=0

Since H at the plate surface is constant, and
therefore independent of and u,, it follows that

W(0,1) = 6,,  and

R,0,t) = 0 to satisfy (2.9)

Finally, to satisfy (2.10) at the edge of the
boundary layer,
oF

Pk -
aco (OO, t) 501(

and Wi(00,8) = 0 = Ry(o0,1).

In each of the equations (4.2), (4.3) and (4.4),
the coefficient of each power of £ is equated to
zero, and this produces three sets of linear
partial differential equations (except that for F
which is non-linear).

Equation (4.2) for the F.’s was solved by
Cheng and Elliott {10] and will not be further
discussed here, although it will, of course, be
necessary to use their results for the solution of
equations (4.3) and (4.4).

The solution to the energy equation is now
developed. Primes denote differentiation with
respect to {,, or, when the argument is ¢ only,
with respect to t.

Zeroth order equations

Pr o+ iF W, =0
with

Wy0,0 =1, Wyw,t)=0 (45

and

1 14 1 4 2
5o Ro + 3 FoRy = —2AFy)2,
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with

R,0,1) =0,
where [10]

F O(Co» )= f O(CO) only.

The nature of (4.5) and (4.6) with their
boundary conditions indicate the W, and R,
are functions of {,, only, ie.

Wo(Co; t) = 2’0({0) and RQ(CO’ t) = XQ(C())'

R, =0  (46)

Hence (4.5) and {(4.6) become
I £ r
"f;; }.0 + % f 02'0 == 0
with
4(0) = 1, Ag(0) =0, 4.7
and
1 18 1 * 2
Prk'?i‘““ 2foto = —2f%
with
%0) =0,  x4(00) =0. 4.8)
First order equations
Since [10]
F 1((05 t) = 09
then
1 '} ? ¥
F;Ws +'§"F0W1 “‘%Fowx =0
with
W,(0,1) =0 = W, (0, 1), 4.9
and
1 " ¥ 4
F;Rl +4F R, —iF,R, =0
with
R,0,)) =0 =R,(w0,8).  (4.10)

Since equations (4.9) and (4.10) are homogeneous
with homogeneous conditions, it appears that
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the solutions are given by W ({,, f) =0 and
R, ({yt) = 0. For all odd values of K, the W
and R, equations are given by (using the fact
that, for odd K, F ({,,t) = 0):

1 K
— W AR Wy~ = F, W, =0

Pr 2
with
W (0,1) =0 = Wi(c0,1)
and
;;R; + 3F R} — %FQ,RK
with

RK(O, H=0= RK(OO, t)

The solutions are given by W ({,,t) =0 and
and R {({,, t) = 0 for K odd.

Second order equations

1 7 r ¥ i F
Pr W, +1F W), ~ F W, "“‘%aggowo - %Won
with

W,(0,1) = 0 = W,(c0,1)
and

1 " ’ ?
I’;‘T‘Rz +%F0R2 - FoRz

= J0500R; + 23R, — 3RGF,
with
R,(0,) = 0 = R,(c0, 1).

Since [10] F,({, 1) = (1) f,({,), and writing
WLy 1) = o3(t) A,((,,) the equation to be satis-
fied by 4, is:

1
s o = foha =30 =304 (41D

with
2,0) = 0 = A(0).
Similarly, writing R,({,, 1) = a3() 1,({,). the
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equation to be satisfied by y, is:
1 ' i y f
Pr k2 + 35S0k — foka
=3~ Mo + 2 — 4 of5 (412
with
Xz(o) =0= }(2(00).
Fourth order equations

1 1 ¢ ¥
5 Wi+ 3F W, = 2FW,

= (F, = )W, + Xe2(, — 3F,) W,
N fou, drow,
u ot

e

~3EW
with
WH0,8) = 0 = Wy{oo,1)
and
1
F;RZ + 3F R, — 2FyR, = (F, — 1 + 205(2}} R,
Jo u, de 3R,
u ot

~ 3F,R, — 2F})* — 4F}F"

+ %j(ozééc - 3F2) Rlz +
with
R4(0’ t) =0 = R4(OO, I).
Since [10]
u"
F (ot = u—s- [§ou,dt]? f,,(C,)

()?
T

o, dt}* 1,0,

and writing

tu dt do?
W (Lo 1) = 0(0) Ay, (Lo) + [LZ__. g _ ag]

oot

% Aysllo) = 5 [, 411 £4(Co)

2
(u,

u4
e

[, dt]?4,4(C0)
o
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the equations to be satisfied by 4,,, 4,,, 4,; and with

gy aTE:
1 #H ’ *
E)“m + %fo’lu - 2fo'141
= %(Co ~ 3 )4 + fi4, 4.13)
1
-I;;lﬁ{z “+ %foitgz — YAy, =4, 4.14)
1 7 7 ’ 14
}?;’143 + %fO}%S - 2fo}'43 = %ﬁu}“o 4.15)
1 i I f 7
j;;}w;‘*‘ %f 03'44 =Y ohi = 3f 4240 (4.16)
with
240.,(0) = () = Zw(oo) (¢ =1,2,30r4),
Similarly, writing
Ry 1) = ad(®) 14,(Cy)
t
fud  ,
e da
+ Q”TEQ - ag 2a2Co)
Uy o 2
] U u, dt]* x45(0)
e O
(“Ie )2 t
T [(J; u, dt]? x,4(C,)

the equations to be satisfied by x,, %42 X453 Xaa
are

1 " " ’
1“3;141 +1 foxes — Y oxa
=4l =)0, + (o +Dx, — 27 @417

1 1 1 t ¥
By Xaz + 3 folaz — Yodaz = 12 (4.18)

1 " ’ +
};Xu + 3 oXas — 2f0X4s

=3fute + 4L (419

1 4 ’
o Xaa + 3 foXaa — Z:f oXaa

Pr
=3$fako T+ Hofi, (420

X4¢(0) =0= X4¢(w) (¢ =1,2,30r4d).

Numerical integration of equations (4.7), (4.8)
and (4.11)(4.20) was performed on an IBM 7090
computer with all equations, except (4.7), being
integrated by the following method. For the
solution, g, to the equation

Dg=1 with  g(0) = 0 = g(0)

where D, is the linear second order operator
ta od K,
Prd} 2o g, 2°°
and I is the inhomogeneous part with I{cc) = 0,
solutions are first found for

Dyg, =0 with g (0) =0 and g,0) =1
and
D,g=1 with g0)=0 and 7(0)=4

where A is constant of suitable magnitude. Then
the solution g = g — (§(00)/g,()) g, and the
quantity associated with the surface heat transfer
rate is

_ g(o)
goloo)

The actval integration scheme was of the
Milne type [17], which automatically halved
or doubled, when necessary, the stepwise inter-
val in the independent variable in order to
produce five significant figure accuracy. During
the course of this part of the program, it was
found possible to make slight improvements to
Cheng and Elliott’s [10] solutions for f,, f,,
and f,,.

Then, using the value obtained analogous to
(4.21), the integration of the equations was
repeated with a Runge-Kutta—Gill method,
using an interval no larger than the smallest
employed by the Milne method, in order to
obtain machine output data at convenient
intervals. On account of small differences
produced by the two integration schemes used,

g0 =4

4.21)
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minor adjustments were made to the values of
¢'(0) so that g(9.0) satisfied the values calculated
independently from the asymptotic form of the
governing equations. A check on the accuracy
of this procedure was made by comparing the
asymptotic value of the first derivative with that
obtained from the machine computation. It was
found that the values of ¢'(0) were extremely
sensitive in determining the asymptotic value
of the function: in the fourth order equations,
for instance, a change in g'(0) of +1 x 1077
produced a change of +380 x 1077 in g(9.0).

Due to space limitations, computer-printed
tables of the results, to five decimal places, are
available in [18] for Pr = 0-72.

5. RESULTS AND DISCUSSION

After appropriate reduction, the expression
for the surface heat transfer rate, for small £, is

given by:
oy, ( ch
Oy

1 fucp, p, _ oH
N _E( X ) = )(@C ).50:0

q(x,0,t) =¢q, =

(5.1)
Using the fact that the speed of sound, a_,in the
undisturbed fluid is given by a2 = (y — V) h_,

and defining an unsteady Mach number by
M _(t) = uft)/a,, equation (5.1) becomes, on
substituting the numerical values found by
integration for Pr = 0-72:

E 3
g, = 0-41061 (ﬁﬂ"f—"@-) (h, ~
x {1 —~ 0069064, ;"fg + (02231202

2
—~ 0:42343u,u)) = + .. — 0:42386() — M2
e

x rﬁ_ﬁw[x + 0045871, o (195014

¥
- 0-54931u€u’e’};‘;— + .. ]} {5.2)
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It is seen that the explicit dependence of g_on &
has dropped out. This independence of the
implied time history (through the absence of
{t, u, dt) was also found by Cheng and Elliott [ 10]
in their solutions for velocity profile and skin
friction, indicating that £ is an indirect, rather
than a direct, parameter for the unsteady bound-
ary layer problem. However, it should be noted
that the determination of g, at a particular x
and t immediately specifies &.

Further conditions for the validity of the
present solution are:
(1) uft) >0forallt
(2) u (1) is infinitely differentiable for all ¢.

Ostrach [15] extended Moore’s work [8] to
inctude heat transfer effects by using a series of
physically conceived parameters

[ERR W LESE

oo e
by = w2

L4

in an expansion procedure. For comparison
with equation (5.2), he obtained

g, = 0-4106 (“i%i’fz) (h, — )

{1 — 0069231, = — 0-4232 u‘

e e

— 042400 — M2, hj . [1 — 004484,

2
x 35— 0:5493u 5 + }} (5.3)
u u,

@

In both (5.2) and (5.3), the leading terms of
unity within the braces and square brackets
represent, respectively, the quasi-steady heat
transfer due to the driving potential A, — h_,and
the viscous dissipation. Good agreement is
found with those terms presented by Ostrach,
the small differences presumably being due to
errors in the integration schemes. Although
Ostrach stated that he was interested only in the
first order deviation (ulfxu terms) from the
quasi-steady state, he included u/x*/u} terms
which are part of the second order solutmn
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based on the parameter x/uZ, as seen from the
present solution (5.2). The complete second
order solution requires inclusion of the terms
u?x*/u* in (5.2) which will, for example, give
the only second order contribution for the case
of constant acceleration (u,(f) = ). The u”x?/u}
terms always give a positive contribution to g,
from the driving potential portion of the
solution, and a similar situation was noted by
Cheng and Elliot [10] when comparing their
skin friction results with those of Moore [8].
The contribution from this term in the viscous
dissipation portion of the solution is always
negative when b, > h_.

Lighthill [7] and Illingworth [16] considered
an unsteady velocity field of the form u(t) =
U_(1 + ee™) where U_ is a steady stream
velocity, o is a circular frequency and ¢ is a
non-dimensional constant with ¢ < 1. Lighthill
used a momentum integral technique, and
Illingworth carried out an expansion” in small
S = wx/U,. If g, is the heat transfer rate with
the steady velocity U_ and dissipation is
neglected, their results may be put in the form

9w _ 1 4+ (05 — BiS)ee® for small §
where, by Lighthill, B = 003 and, by Illing-
worth, B = 0-070.

To the same order of accuracy (neglecting
terms in $?), the present analysis, and also that
of Ostrach, give B = 0-069. On account of the
small magnitude of B, (5.4) shows that, for small
S, the unsteady heat transfer rate and the
velocity are essentially in phase.

(5.4)

6. CONCLUSIONS

The problem of heat transfer, including the
effects of viscous dissipation, has been investi-
gated for a semi-infinite flat plate moving
unsteadily into a stagnant compressible fluid.

A series expansion solution, for small values
of the parameter ¢ = x/{}, u, dt was constructed
under the conditions that no flow reversal
occurred and that the time-dependent plate
velocity function was infinitely differentiable.
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The solution obtained consisted of the quasi-
steady value followed by the first and second
order unsteady deviations from it, both for the
heat transfer occurring under a constant driving
potential in the absence of viscous dissipation,
and for the added correction due to this effect.

The final form of the solution was similar to
that obtained by Ostrach for the same problem,
using a different approach. The fact that the
time-history dependent quantity £ did not
appear in the present solution indicates that it
is an indirect parameter for the problem.

Good agreement was obtained with Ostrach’s
numerical values, but the present analysis
contains a second order term not included by him.
This term always gives a positive contribution
to the driving potential portion of the solution
and, for h, > h_, a negative contribution in the
viscous dissipation portion of the solution.

To the first order, the present solution is also
found to be in good agreement with the results
of Lighthill and Illingworth who, by different,
linearized, approaches, considered the case of a
small amplitude sinusoidal velocity variation
superimposed on a steady velocity.
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TRANSFERT THERMIQUE A TRAVERS LA COUCHE LIMITE LAMINAIRE
INSTATIONNAIRE SUR UNE PLAQUE PLANE SEMI-INFINIE
lére partie: CONSIDERATIONS THEORIQUES

Résumé— On considére le probléme d’une plaque semi-infinie se déplagant 3 la vitesse u,(¢) dans un fluide
au repos et on obtient une solution du second ordre pour le transfert thermique avec enthalpie constante &

1
1a surface et pour une petite valeur de ¢ = x/iue(:) dt (ol 1 est le temps, w,(f) = —u, (1) et x la distance au

bord d’attaque). La solution, qui comprend {'effet de dissipation visqueuse, est valable pour u,(r) positif

et infiniment différentiable pour tout 7; elle est le prolongement du travail de Cheng et Elliot qui ont

obtenu la solution du profil de vitesse et du frottement & partir de 'équation de quantité de mouvement pour

fluide incompressible. Des résultats de second ordre sont obtenus par intégration numérique pour un

nombre de Prandt]l de 0, 72 et un accord satisfaisant existe avec les résultats d’autres chercheurs qui,

utilisant différentes approches, ont obtenu seulement la solution de premier ordre ou une solution incom-
pléte du second ordre.

WARMEUBERTRAGUNG DURCH DIE INSTATIONARE LAMINARE GRENZSCHICHT
AN EINER HALBUNENDLICHEN FLACHEN PLATTE
TEIL I: THEORETISCHE BETRACHTUNGEN

Zusammenfassung—Das Problem einer halbunendlichen Platte, die sich mit der Geschwindigkeit u (1)
in einer ruhenden Fliissigkeit bewegt, wird untersucht. Die dabei gewonnene Losung fiir die Warmeiiber-
tragung ist bei konstanter Oberflichenenthalpie korrekt bis zur zweiten Ordnung und giiltig fiir kleine

&= x/ gug(t) dt {dabei ist ¢ die Zeit, u{t) = ~u,{t) und x die Entfernung von der Anstrémkante). Die

Léosung, die den Effekt der viskosen Dissipation beriicksichtigt, ist giiltig unter den Bedingungen u (1) > 0
und () unendlich oft differenzierbar fiir alle «.

Diese Arbeit ist eine Fortsetzung der Untersuchung von Cheng und Elliot, die die inkompressible
Bewegungsgleichung fiir die Geschwindigkeitsprofile und dic Wandreibung 10sten Ergebnisse zweiter
Ordnung erhilt man durch numerische Integration fiir eine Prandtl-Zahl von 0,72; sie zeigen eine zufrie-
densteliende UVbereinstimmung mit den Untersuchungen anderer Autoren, die unterschiedliche Nihe-
rungen verwendeten, entweder eine Losung erster Ordnung oder eine unvollstindige Losung zweiter

Ordnung.



HEAT TRANSFER THROUGH THE UNSTEADY LAMINAR BOUNDARY LAYER

[IEPEHOC TEIIJIA YEPE3 HECTALMOHAPHBIA JAMUHAPHLIN
[OTPAHUYHBIN CJIOA HA NOJYBECHOHEYHON INIOCKON NJIACTUHE.
1. TEOPUA

Annoranmia—PaccMarpuBaeTcad 8aaua 0 MOAYyGECKOHEYHON ILIOCKON IIACTHHE, JBUMKY-
meicH B HEMOBIKHON JKHIKOCTH CO CHOPOCTBIO #y{f). G TOYHOCTBIO ZO BTOPOTO HOPHAKA
OONYYEHO pelieHMe A IePeHoCa TeTIa TPH NOCTOAHHON DHTAJIBNNM NOBEPXHOCTH M

gefonpmnX suauenuit
£ = x/.”)”e(t) ds,
The (-BpeMH, uglt) = — uylt), X-paccroanne oT nepegHell KPOMKH.

Peienue, yIuTHBARIOEE BABKYI0 HCCHNANNIO, CIPABENIINBO IPU YCIIOBHY, 4T0 Ut} > O,
a uy(t) Gecroneyno auddepennupyemo npu BeexX ¢, ITO pellleHUe ABAASTCA NPOTOIKEHHEM
pabortt YeHra ¥ DIMOTA, KOTODPHE DelIMIM YpaBHeHMe HMIYNBCA HECHKUMaeMO# cpemsl
B npoduas cropocTell W IOBEPXHOCTHOYO TpeHMA. PesyibTarTsl ¢ TOYHOCTBIO KO BTOPOrC
OpAfKA MONYYEHH YMCICHHBIM METerpUpoBaHumeM Jis umcaa Ilpampras, pasmoro (,72.
IloxasaHo YAOBIETBOpHTE JbHOE COBIAfeHUe ¢ JAHHBIMH APYTHX HCCIegoBaTeielf, HCIOIb-

BYWIHX VNHBE METOAH.
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