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Abalzact-The problem of a semi-infinite plate moving with a velocity u,(f) into a stagnant fluid is con- 
sidered, and a solution correct to second order for heat transfer with constant surface enthalpy is obtained 
for small { = x/&u&) dt (where t is time, u&t) = -u,(t) and x is the distance from the leading edge). The 
solution, which includes the effect of viscous dissipation is valid under the conditions that u,(t) > 0 and 
u,(r) is infinite& differentiable for aII r, and is the ~ntinuation of the work of Cheng and Elliott, who obtained 
the solution to the incompressible momentum equation for the velocity profile and skin friction. Second 
order results were obtained by numerical integration for a Prandti number of @72, and satisfactory agree- 
ment is shown with the results of other investiaators who used different anbroaches in obtaining iust the 
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1. ~TRODUCTION AND METHOD OF 
APPROACH 

VARIOUS investigators have analyzed unsteady 
flat plate motions, the earliest being Stokes [l], 
followed by Rayleigh [l], with their associated 
classical problems which yielded exact solutions 
to the incompressible Navier-Stokes equations. 
Impulsively started compressible flat plate 
motions have been studied by Stewartson 
[2, 31, Howarth [4], Van Dyke [5] and others, 
and Ostrach [6] has investigated the com- 
pressible analogue to Stokes’ problem. 

Unsteady solutions for skin friction for various 
types of semi-finite plate motion, u,(t), have 
been obtained by Lighthill [7], Moore [S], 
Cheng [9] and Cheng and Elliott [lo]. Sarma, 
in a series of papers [ 1 l-141, developed a unified 
theory for unsteady boundary layers under 
varying conditions of velocity and temperature 
based on a linearized analysis similar to that of 
Lighthill [7]. The present paper is an extension 
of Cheng and Elliott’s work to include compress- 
ible heat transfer effects. The expansion solution 
obtained for constant plate surface enthalpy is 
valid for small 5 = x/t; u,(t) dt (where t is time, 
udt) = --u,,,(t) and x is the distance from the 
leading edge), under the conditions that u,(t) > 0 
and ye(t) is infinitely differentiable for all t. These 
conditions stipulate that the plate moves with 
no reverse flow (i.e. the leading edge never 
becomes a trailing edge), and that motions of an 
impulsive nature are excluded. Cheng and 
Elliott’s further condition that the plate start 
from rest (up(O) = 0) will be relaxed, so that the 
heat transfer will consist of the quasi-steady 
value followed by terms representing deviations 
from this value. 

After reduction of the appropriate compress- 
ible boundary layer equations to an incom- 
pressible, uncoupled form by means of the 
Howarth-Dorodnitsyn variable under the as- 
sumption of a linear viscosity-enthalpy law, 
two series expansions in <, = 4% are developed 
for the energy equation. The first series gives the 
heat transfer rate occurring under a constant 
driving potential in the absence of viscous 

dissipation, the correction due to this effect 
being made by addition of the results from the 
second series. The validity of this procedure 
follows from the linear nature of the energy 
equation. 

The results obtained are then compared with 
those of Lighthill [7], Ostrach [lS] and 
Illingworth [16], the nature of whose work will 
be described when the comparison is made in a 
later section. 

Part II will present experimental results for 
verification of the theory. 

2. FORMULATION OF THE PROBLEM 

For a flat plate with zero pressure gradient 
and constant surface enthalpy, moving un- 
steadily into a compressible stagnant fluid, 
where the coordinate axes (x*, JJ*) are fixed in 
space, the boundary layer equations are : 
Continuity: 

g -t & (p*u”) + $ (p*“*) = 0 (2.1) 

momentum : 

au* 
p*-$-++ plumb+ p*u*$ 

a 
= 

%J* o 
-=_1 

aY* 

dY* 

(2.2) 

Energy: 

(2.3) 

where (u”, u*) are the velocity components in the 
(x*, y*) directions respectively, and p*, p*, p* 
and h* are respectively the density, viscosity, 
pressure and enthalpy, and Pr is the Prandtl 
number. 

To solve the above system, the following 
equations are added: 



HEAT TRANSFER THROUGH THE UNSTEADY LAMINAR BOUNDARY LAYER 557 

State: p* = p*RT* (2.4) 

Viscosity-enthalpy law : 

I_L* = p*(h*). (2.5) 

For all t* the plate is considered to be lying 
along the x*-axis (y* = 0) with its leading edge 
at x* = 0 when t* = 0, and, at this instant, the 
plate is moving with a velocity u;2(t*) in the 
negative x*-direction. This velocity is arbitrary 
to the extent allowed by the following conditions: 

(1) I&*) < 0 for all t* 
(2) u*(P) is infinitely differentiable for all t*. 

Condi&n (1) ensures that the plate moves with 
no ensuing reverse motion, and condition (2) 
excludes motions of an impulsive nature. 

Following the development of Cheng and 
Elliott [lo], use of the Howarth-Dorodnitsyn 
variable, introduction of a stream function 
defined by 

* 
_!Lu*=__ a** 

p*, ay* ’ 

use of a linear viscosity enthalpy relation of the 
form 

(c is a constant), and transfer of the coordinate 
system (x*, y*, t*) fixed in space to fx, y, t) fixed 
in the plate with the origin at the leading edge 
and $(t*) = -z.J&), transforms the equation 
system (2.1)-(2.5) to 

$ + tiytixy - *,ll/,, = 2 + cv,$,, (2.6) 

Jr, + @,h, - ICl,h, = 2kYY f cv&$. (2.7) 

The appropriate boundary conditions are 

tiX = $$ = 0 for x>O,y=O (2.8) 

h = h, = constant for x 2 0,y ~0 (2.9) 

% = Q) 
k = h, 3 for x >O,y--+ co. (2.10) 

Equations (2.6) and (2.7) are uncoupled and in 
incompressible form, and solutions obtained 
for (2.7) are valid both when the plate is moving 
into undisturbed fluid and when the fluid is 
moving over the plate at rest. However, any 
solution obtained, and applied (via the inverse 
transformation) to the full compressible prob- 
lem, is valid only for the plate moving unsteadily 
into fluid at rest; this can be seen from the 
boundary condition (2.10), since h, can be 
constant only in a sta~ant ~compressible) field. 

3. NON-DIMENSIONAL PARAMETFJtS FOR THE 
SOLUTION FOR SMALL { 

From the work of Cheng [P] and Cheng and 
Elliott [lo], it turns out that the correct para- 
meters for a solution around c = 0 are: 

and Co = lr,%,&, = Y (3.1) 

(3.2) 

with the stream function expanded as 

tlr = (?&x)” j’, I;;y(&j’ t)r:* (3.3) 

As defined in equation (3.1), C, is a direct ex- 
tension of the Blasius parameter into unsteady 
flow. The parameter 01$ equation (3.2), is required 
in the ensuing analysis. 

Following a procedure similar to that used by 
Ostrach [ll], a non-dimensional parameter for 
the energy equation, with ~nst~t surface 
enthalpy, h,, is defined by: 

W, Y, t) = 
h(x, Y, t) - h, 

h 
w-h, * 

(3.4) 

Substitution of (3.3) and (3.4) into (2.13) yields: 
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Equation (3.5) is the final form of the energy 
equation, which is linear in H. For constant 
surface enthalpy a solution will first be obtained 
to the homogeneous equation involving the 
storage, convection and conduction terms, and 
to this will be added the particular integral from 
the full inhomogeneous equation which wili 
include the viscous dissipation term. Hence H is 
split as follows: 

W, y, tl = w(x, y, t) -f 
a,’ 

2@ _ h ) r&x, Y, r) (3.6) 
W m 

where w is the homogeneous solution and r is 
the particular integral. Finally, w and r are 
expanded as : 

4. DEVELOPMENT OF THE EQUATIONS FOR 
SMALL c 

From the parameters defined in (3.1), the 
transformation relations from (x, Y, t) to 

Co, lo, t) are: 

a 15, a lc,a a 
ax= --- 2 x at, ----; -= 

2 x ai, s 
a a dj I -=- 
at at 

_~_---A+!$[ a 
2 PO U, dt a& 2 u, O a&)’ 

(4.1) 

Introduction of $ from (3.3), w from (3.7) and 
By the coordinate transformation of (4.1), 

r from (3.8) into the momentum equation (2.12) !_ = 2 3 6,: and 
and the energy equation t3.5) (neglecting the ue K=O al, 

viscous dissipation term when substituting for 1 cv u + 
w), results in the following systems of partial t,=- -..zL.z 

di~~renti~ equations : 
2 i > X 

Hence, to satisfy boundary condition (2.9, it 
will be necessary that 

aFK F,(O, t) = 0 = ay, (0, t). 
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From (3.4), (3.6), (3.7) and (3.8) with hfx, 0, t) = with 
h, = constant, then 

R&O, 0 = 0, R&al, t) = 0 (4.6) 

M%O, r) = 1 = f Q(O> r)t:: + 2@ 
I(=0 

a! /$ 
W m 

) where [IO]. 

x xjO &(O, r) 9:. 

F&, 0 = f&S,) only. 

The nature of (4.5) and (4.6) with their 

Since H at the plate surface is constant, and 
boundary conditions indicate the W,, and R, 

therefore independent of and ue, it follows that 
are functions of lo only, i.e. 

Wg(O, t) = se, and 
&(iO, 0 = &(&,) and && t) = x&S,). 

to satisfy (2.9) 
Hence (4.5) and (4.6) become 

RJO, t) = 0 

Finally, to satisfy (2.10) at the edge of the 
$;+ $f& = 0 

boundary layer, 

$&a, t) = s,, 
with 

0 n,(o) = 1, n,w = 9 (4.7) 

and Wx(oo, t) = 0 = R,(oci, t). and 

In each of the equations (4.2), (4.3) and (4.4), 
the coefficient of each power of <, is equated to 
zero, and this produces three sets of linear 
partial differential equations (except that for Fe 
which is non-linear). 

Equation (4.2) for the FK’s was solved by 
Cheng and Elliott [lOI and will not be further 
discussed here, although it will, of course, be 
necessary to use their results for the solution of 
equations (4.3) and (4.4). 

The solution to the energy equation is now 
developed. Primes denote differentiation with 
respect to To, or, when the argument is t only, 
with respect to t. 

;$-+ $f(Jb = -2ffb'Y 

with 

X&O) = 0, X,(W) = 0. 

First order eq~at~o~~ 
Since [lo) 

F&J, t) = 4 

then 

t; W;l + fF,W; - $F;W, = 0 

with 

(4.8) 

Zeroth order equations W&O, t) = 0 = w$J3, t), (4.9) 

&Wb’++F,W;=O 

with 

and 

- ;FbR, = 0 

W& t) = 1, W,(cu, t) = 0 (4.5) with 

and R&O, t) = 0 = R&m, t). (4.10) 

j+.; + fFOR; = - 2(5)2, 
Since equations (4.9) and (4.10) are homogeneo~ 
with homogeneous conditions, it appears that 
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the solutions are given by W,(&,, tf = 0 and equation to be satisfied by xz is: 
RI&,, t) = 0. For ah odd values of K, the WK 
and R, equations are given by (using the fact 
that, for odd K, F&&, t) = 0): 

ix; + f.f&! - fbxz 

+v;;+-F$v;r +)W,=O 
= ;cir, - 3fJ x; + 2X0 - ?f‘ ;If;’ (4.12) 

with 

with 

and 

WK(O, t) = 0 = W&x), t) 

x,(O) = 0 = x&m). 

Fourth order equatioons 

The solutions are given by W&,, t) = 0 ancl 
and R&‘,, t) = 0 for K odd. clr,(O, t) = 0 = Wd(co, t) 

Second order equations and 

$ W; + iF, W; - Fb W, = ~~~~~~~ - $4$F, j+; -I- $F,Rf, - 2FbR, = (F; - 1 + 2cx;j R, 

with + #r, - 3FJ R; t Sb @, dt 8% 
u dt 

w#I, t) = 0 = W;(cW, t) 

and 
- $F,Rb e 2(F’,‘)2 - 4Fp; 

with 

&R; + $F,R; - F;R, R,(O, t) = 0 = R,(cq t), 

= ~~~~~R~ + ~E;R, - $R;F, 
Since [IO] 

with F,(i,, ~1 = s tf:, u, dr12f,,(i,f 

R,(O, t) = 0 = R&co, t). 
g: 

Since [lo] F,(C,, t) = a;(t) f&‘,), and writing + y L& a, dC12.L&,l, 
W,([,, t) = a:(t) k&,) the equation to be satis- 
fied by A, is: and writing 

Ai; -t- $)n; - f& = *cr, - 3fJ & (4.11) WC&> t) = u:(t) A&)) + 
[ 

Sb u, dt da: E; 
a, dt I 

with x A&J - $ [j u, dt]’ &,ti,) 
e 0 

k,(O) = 0 = l&Q)* 

Similarly, writing R&I,, t) = a:(t) xzKoh the - F [i u, dt]2d,,(Co) 
e 0 
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the equations to be satisfied by &, &, A,, and with 
A& are: 

X+&O) = 0 = X.&J) ($ = 1, 5 3 or 4). 

-$L + 4&J& - 2fb& Numerical integration of equations (4.7), (4.8) 
and (4.1 Q-(4.20) was performed on an IBM 7090 

= $ro - 3f,) x, + f;a, (4.13) computer with all equations, except (4.7), being 

$nr, I” if& 

integrated by the following method. For the 

- 2f & = A, (4.14) solution, g, to the equation 

$3 + ff&, 

Dzg = 1 with g(0) = 0 = g(a) 

- 2f &, = $jz& (4.15) 
where D, is the linear second order operator 

- 2f&4,, =~f.& (4.16) 

with 

J,,(O) = 0 = &W 

Similarly, writing 

W&Y ;) = @> X&J 

(f#~ = 1,2,3 or 4) 

the equations to be satisfied by xbl, xh2, xh3, xb4 
are 

j&1 -+&fOXkl - 2foX41 

= $& - 3j-J & + (f; + 21)x2 - 2(f[2’12 (4.17) 

j$z2 f -t-f0Xkz - 2fbK42 = x2 (4.18) 

; X& + 3f OXk3 - ~fi&a 

= 3f,,xb + 4f;(f& (4.19) 

1 
pr XL + 3.&J&4 - x3X44 

= 3-42x; + %;;fi, (4.20) 

and I is the inhomogeneous part with I(W) = 0, 
solutions are first found for 

DKgo = 0 with g,(O) = 0 and g;(O) = 1 

and 

O&j = I with g(O) = 0 and g’(O) = A 

where A is constant of suitable magnitude. Then 
the soIution g = jj - ~(~)/go(~~}go and the 
quantity associated with the surface heat transfer 
rate is 

g'(0) = A - -# (4.2 1) 
0 

The actual integration scheme was of the 
Milne type [17], which automatically halved 
or doubled, when necessary, the stepwise inter- 
val in the independent variable in order to 
produce five signilicant figure accuracy. During 
the course of this part of the program, it was 
found possible to make slight improvements to 
Cheng and Elliott’s [lOI solutions for fi, fhl 
and f42 

Then, using the value obtained analogous to 
(4.21), the integration of the equations was 
repeated with a Runge-Kutta-Gill method, 
using an interval no larger than the smallest 
employed by the Milne method, in order to 
obtain machine output data at convenient 
intervals. On account of sinall differences 
produced by the two integration schemes used, 
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minor adjustments were made to the values of 
g’(0) so that g(9.0) satisfied the values calculated 
independently from the asymptotic form of the 
governing equations. A check on the accuracy 
of this procedure was made by comparing the 
asymptotic value of the first derivative with that 
obtained from the machine computation. It was 
found that the values of g’(0) were extremely 
sensitive in determining the asymptotic value 
of the function: in the fourth order equations, 
for instance, a change in g’(0) of f 1 x lo- 7 
produced a change of + 380 x lo-’ in g(9.0). 

Due to space limit~~ons, computer-printed 
tables of the results, to five decimal places, are 
available in [18] for Pr = O-72. 

5. RESULTS AND ~IS~~~SSI~~ 

After appropriate reduction, the expression 
for the surface heat transfer rate, for small 5, is 
given by: 

It is seen that the explicit dependence of cf,,, on r 
has dropped out. This independence of the 
implied time history (through the absence of 
y0 u, dt) was also found by Cheng and Elliott [lo] 
in their solutions for velocity profile and skin 
friction, indicating that 5 is an indirect, rather 
than a direct, parameter for the unsteady bound- 
ary layer problem. However, it should be noted 
that the determination of 4, at a particular x 
and r immediately specifies 5. 

Further conditions for the validity of the 
present solution are: 
(1) u,(f) > 0 for all t 
(2) u,(t) is in~nitely di~erentiable for ail t. 

Ostrach [15] extended Moore’s work [S] to 
include heat transfer effects by using a series of 
physically conceived parameters 

in an expansion procedure. For comparison 
with equation (5.2), he obtained 

4, = 04106 

(5.1) 
Using the fact that the speed of sound, am, in the 

x 
i 

1 - 0*06923u: ; - 0.4232~; 5 + . , . 
v e 

undisturbed fluid is given by u”, = (y - 1) h,, 
and defining an unsteady Mach number by 
M,(t) = u&)/a,, equation (5.1) becomes, on 

hco 1 - 0*044&J; - @4240(~ - 1) M; hW _ h, 

substituting the numerical values found by 
integration for Pr = 072: 

2 

xy--@5493u$$+... . 4 II (5.3) 
F 

(I, = 0.41061 uec$P, 
( j 

+VL - h,) In both (5.2) and (5.31, the leading terms of 

x 
r 

unity within the braces and square brackets 

1 - 0*04906~ 3 -I- (0.223 12 u’,” represent, respectively, the quasi-steady heat 

e transfer due to the driving potential h, - h,, and 

- O-42343uyb’) $ + . . . 
the viscous dissipation. Good agreement is 

- ~42384(~ - l)M2, found with those terms presented by Ostrach, 
e the small differences presumably being due to 

h, 
errors in the integration schemes. Althou~ 

’ h, - hw [ 
1 + ~~587u~ $ f (1*95014u; Ostrach stated that he was interested only in the 

e first order deviation (z@ni terms) from the 
t5 2j quasi-steady state, he included u~x’/u~ terms 

. . 
which are part of the second order solution 
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based on the parameter X/U:, as seen from the 
present solution (5.2). The complete second 
order solution requires inclusion of the terms 
u;“z$/u~ in (5.2) which will, for example, give 
the only second order contribution for the case 
of constant acceleration (u&) = t). The $‘x2/u~ 
terms always give a positive contribution to 4, 
from the driving potential portion of the 
solution, and a similar situation was noted by 
Cheng and Elliot [lo] when comparing their 
skin friction results with those of Moore [S]. 
The contribution from this term in the viscous 
dissipation portion of the solution is always 
negative when h, > h,. 

Lighthill [7] and Illingworth [16] considered 
an unsteady velocity field of the form u,(t) = 
Uto(l + E eimr) where Urn is a steady stream 

velocity, w is a circular frequency and 6 is a 
non-dimensional constant with E < 1. Lighthill 
used a momentum integral technique, and 
Illingworth carried out an expansion” in small 
S = wx,/U,. If qW is the heat transfer rate with 
the steady velocity Urn and dissipation is 
neglected, their results may be put in the form 

4 W = 1 + (O-5 - BiS) 6 eiof for small S (5.4) 
4 WS 

where, by Lighthill, 3 = 0.03 and, by Illing- 
worth, B = 0=070. 

To the same order of accuracy (neglecting 
terms in S’), the present analysis, and also that 
of Ostrach, give B = O-069. On account of the 
small magnitude of B, (5.4) shows that, for small 
S, the unsteady heat transfer rate and the 
velocity are essentially in phase. 

6. CONCLUSIONS 

The problem of heat transfer, including the 
effects of viscous dissipation, has been investi- 
gated for a semi-infinite flat plate moving 
unsteadily into a stagnant compressible fluid. 

A series expansion solution, for small values 
of the parameter 5 =I; w’& u, dt was constructed 
under the conditions that no flow reversal 
occurred and that the time-dependent plate 
velocity function was infinitely differentiable. 

The solution obtained consisted of the quasi- 
steady value followed by the first and second 
order unsteady deviations from it, both for the 
heat transfer occurring under a constant driving 
potential in the absence of viscous dissipation, 
and for the added correction due to this effect. 

The final form of the solution was similar to 
that obtained by Ostrach for the same problem, 
using a different approach. The fact that the 
time-history dependent quantity < did not 
appear in the present solution indicates that it 
is an indirect parameter for the problem. 

Good agreement was obtained with Ostrach’s 
numerical values, but the present analysis 
contains a second order term not included by him. 
This term always gives a positive contribution 
to the driving potential portion of the solution 
and, for h, > h,, a negative contribution in the 
viscous dissipation portion of the solution. 

To the first order, the present solution is also 
found to be in good agreement with the results 
of Lighthill and Illingworth who, by different, 
linearized, approaches, considered the case of a 
small amplitude sinusoidal velocity variation 
superimposed on a steady velocity. 
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TRANSFERT THERMIQUE A TRAVERS LA COUCHE LIMITE LAMINAIRE 
INSTATIONNAIRE SUR UNE PLAQUE PLANE SEMI-INFINIE 

l&e partie: CQNSIDERATIQNS THEORIQUES 

R&uut%- On considere le probleme d’une plaque semi-infinie se dbplat;ant a la vitesse u,(t) dam un fluide 
au repos et on obtient une solution du second ordre pour le transfert thermique avec enthaipie con&ante a 

la surface et pour une petite valeur de < = x&(r) dt (ou t est le temps, g,(t) = -u,(f) et x la distance au 

bord d’attaque). La solution, qui comprend l’effet de dissipation visqueuse, est valable pour u,(t) positif 
et in~niment ~ff~rentiable pour tout t: elle est le prolongement du travail de Cheng et Elliot qui ont 
obtenu la solution du profil de vitesse et du frottement & partir de 1’Cquation de qua&e de mouvement pour 
fluide incompressible. Des resultats de second ordre sont obtenus par integration numerique pour un 
nombre de Prandtl de 0, 72 et un accord satisfaisant existe avec les restmats d’autres chercheurs qui, 
utilisant differentes approches, ont obtenu settlement la solution de premier ordre ou une solution incom- 

plete du second ordre. 

W~RMEUB~RTRAGUNG DURCH DIE INSTATION~RE LAM~A~E GRENZSCHICHT 
AN EINER HALBUNENDLICHEN FLACHEN PLATTE 

TEIL I: THEORETISCHE 3ETRACHTUNGEN 

~~~a~-Das Problem einer halb~endlich~ Platte, die sich mit der Geschwi~di~~it u,(r) 
iu einer ruhenden Fl~ssigkeit bewegt, wird unt~su~ht. Die dabei gewonnene L&sung fiir die Wlrmeiiber- 
trag~g ist bei konstanter Oberfl~ch~enthalpie korrekt bis zur zweiten Ordnung und g#tig f&r kleine 

< = xi d u&t) dt (dabei ist f die Zeit, u&t) = -u, (c) und n die Entfemun~ von der A~str~mkante). Die 

L&ung, die den Effekt der viskosen Dissipation ~r~cksichtigt, ist gtiltig unter den ~ingung~ y(t) > 0 
und u,(t) unendlich oft ~erenzierb~ ftir alle t. 

Diese Arbeit ist eine Fortsetzung der Untersuchung von Cheng und Elliot, die die inkompressible 
Bewegungsgleichung f%r die Geschwindigkeitspro~Ie und die Wandreibung l&ten Ergebnisse zweiter 
Ordnung erh&lt man durch numerische Integration fiir eine Prandtl-Zahl von 0,72; sie zeigen eine zufrie- 
denstellende Ubereinstimmung mit den Untersuchungeu anderer Autoren, die unterschiedliche Nthe- 
rungen ver-wend&en, entweder eine Lijsung erster Ordnung oder eine unvolls@ndige L&sung zweiter 

Ordnung. 
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IIEPEHOC TEIIJIA YEPEB HECTAI.JIJOHAPHbI%i JIAMLIHAPHbIT?[ 
~O~PAH~~~bI~ CJIO%i HA ~O~Y~EC~OHE~HO~ ~~OC~O~ ~~ACT~HE. 

1. TEOP~~ 

AHHOTa~E~-PaCCMaTpmsaeTC~ saaaqa 0 nOJIy6eCKOHe9HOi nJ10CltO# nJIaCTme, ~Q3urmy- 
xqeicfi B Keno~sslttKoZi ~KK~KOCTE~ co CKopocTbm u&t)= C T~YH~CT~H) x0 ~T0p0r0 nopnAKa 
~o~y~eK0 pe~eK~e ~[nfi neperroca Tenna npln ~OCT~~HHO~ 3KTa~6K~~ ~0BepxHocT~ H 
Ke6onbmax 3KaseHtlfi 

f = x/J:,ue(t) dt, 

Ixe t-apem, z&f = --ii&t), x-paCcTomiae OT reperked izpo~Kzi. 
PenreKae,ysHTnBaio~eesrraKyIoAvrccana~~~,cnpaseRnvrBo npH ycno~m,Y~o zig(t) > 0, 

a u&) 6ecKoHeYHo AH*i#epeHqHpyeMo IIpH Bcex t. 3TO penxeme fIBJlHeTCH rrpoAomKeHHeM 
pa6om Yema M 3mmoTa, KoTophte pemmm ypamieme mnynbca Hec3mmfaemo# cpeabx 
j&JIa npO~K~~ CKOpOCTe2t K ~OBCpXHOCTHOrO TpeHtIR. Pe8yZbTaTbl C TOqHOCTb~ A0 BTOpOrO 
nopKgKa nojIyYeKar 'IImJleHHbIM ~KTerp~poBaH~e~l @Ifi wma ripaHnTnR, paBHOI'0 0,72. 
IloKaaaKo y~omemOpm3 sbme Comrafieme C ~a~~binfzi ~pyrrnx EiccJIeAoBaTemeZt,EICfliomb- 

~y~~x~H~e Merow. 


